Импульсный Блок Питания Для Шуруповерта - Блоки питания (импульсные) - Источники питания. Трансформаторы типа тпи Основные технические характеристики импульсного блока питания

Внесу-ка и я свой (частично правда позаимствованный у более крутого спеца в этом деле, думаю он не обидится) пятак в эту копилку.
До того как разбирать не вредно измерить индуктивность добротность обмоток, а еще лучше снять эти данные с живого образца, чтобы было с чем сравнить после ремонта.
По расклейке - фен помогает не всегда в случае больших сердечников. Я пользовался для расклейки сначала маленькой лабораторной плиткой, потом плоским ТЭНом от
электрочайника (там даже термовыключатель на 150 градусов стоит, но можно для перестраховки через ЛАТР включать и температуру подбирать). Ставил обязательно плотно прижимая свободной частью феррита (если стороной склейки то предварительно сошлифовав наплыв клея) к холодной поверхности нагревателя и уже потом включал.
При разборке главное терпение - потянул посильнее и вот те проблема лишняя.
По сердечникам - с разборкой и обратной сборкой проблем почти не было кроме GRUNDIGов и PANASONICов. В хрюнделях (залитые компаундом ТПИ в старых ТВ) основные проблемы как раз и связяны с сердечниками точнее с их расстрескиванием. Поставить туда другой подходящий по размерам сердечник не удается из-за того что рабочая частота этих ТПИ в 3-5 раз выше и низкочастотные сердечники не живут в них. Спасает в этом случае применение сердечников от больших FBТ. Для полноценного воссоздания требуется живой образец от такого-же изделия для сравнения характеристик. (ежели очень припрет восстановить - найдется)
(Вопросов о себестоимости и целесообразности данных работ просьба не задавать, но факт остается фактом - работают такие гибриды.)
С некоторыми Панасами хитрость заключается в очень маленьких зазорах и вот тут и помогает предварительный замер индуктивности.
Склеивать суперклеем не советую т к имел несколько повторов из-за растрескивания клеевого шва. Замесить каплю эпоксидки конечно суетно но надежнее, и после склейки хорошо сжать стык (например подав на обмотку постоянное напряжение - сама стянет да еще и слегка подогреет).
Про кастрюлю с кипятком - подтверждаю для случая с FBT (нужно было выдрать сердечники из 30 дохлых флаев) работает отлично, глумимться таким образом над ТПИ, которые предстояло перематывать не стал.
На данный момент все что перематывалось (мной, и в особо тяжелых случаях упомянутым спецом Н.Новопашиным) работает. Были даже успешные результаты по перемотке строчных трансформаторов (с внешним умножителем) от достаточно древних промышленных мониторов, но там секрет успеха в вакуумной пропитке обмоток (кстати Николай пропитывает практически все перемотанные трансы кроме откровенного ширпотреба) и на коленке это к сожалению не лечится.
Упомянутым Rematikом прибором проверяли недавно ВВ транс подсветки от приборной панели Мерседеса - показал все ОК на заведомо пробитом трансе, правда и DIEMENовский прибор тоже на нем обманул - пробивался транс только на довольно большом напряжении что собс-но и позволило его промерить на низком.

"Начудили" китайцы в блоке питания тюнера TECHNOSAT 4050C, который вышел из строя. С завода стояла микросхема с маркировкой 5MO2659R, но на самом деле - ЭТО НЕВЕРНАЯ МАРКИРОВКА. Какая это микросхема - не известно, стоящая там явно не подходит в данный блок питания: если её впаять, то получается КЗ по 350 V.

На плате этого блока питания фигурирует надпись VIDER22A, на которую я сразу не обратил внимания. Эта микросхема часто применяется в БП для DVD. Когда я заметил эту надпись, то подумал, что всё решено. Но не тут-то было. Чтоб заработал данный БП пришлось немного попотеть. А именно: я установил отсутствовавшие элементы - резисторы R14:4,7К, R3:22Ом, диод D6FR207, сделал один разрыв в печатном монтаже, так чтоб R14 одной стороной соединялся только с оптопарой, а другой его вывод - с катодом диода D6 и с плюсовым выводом конденсатора С2, и с четвёртым выводом микросхемы U1 (см. фото).

И пришлось не разбирая ТПИ (трансформатор), домотать отсутствующую обмотку проводом ПЭЛ 0,16 четырнадцать витков (см. рис. ниже):

Вид ТПИ снизу

Начало подпаиваем к пустому выводу 1, который идёт на R3 (22Ом), а конец - так же на пустой вывод, который идёт на минус конденсатора С1 (47х400V).

Добавленную обмотку пропитать клеем, например, "Момент". Затем нужно впаять микросхему VIPER22A. Включаем, пользуемся.

Окончание табл. 2.2 Номер ш IV IVa IV6 IV6 IV6 V VI Обмотка Наименование Положительной обратной связи Выпрямителей 125, 24, 18 В Выпрямителя 15 В Выпрямителя 12 В Выводы 11 6-12 в том числе: 6-10 10-4 4-8 8-12 14-18 16-20 Число витков 16 74 54 7 5 12 10 10 Марка провода ПЭВТЛ-0,355 ЗЗИМ ПЭВТЛ-0,355 ПЭВТЛ-0,355 Вид намотки Рядовая в три провода Рядовая в два провода, два слоя Рядовая в два провода То же -«- Рядовая в четыре провода То же Сопротивление, Ом 0,2 1,2 0,9 0,2 0,2 0,2 0,2 0,2 Примечание. Трансформаторы ТПИ-3, ТПИ 4 2, ТПИ-4-3, ТПИ-5 выполнены на магнитопроводе М300НМС Ш12Х20Х15 с воздушным зазором 1,3 мм в среднем стержне, трансформатор ТПИ-8-1 - на замкнутом магнитопроводе М300НМС-2 Ш12Х20Х21 с воздушным зазором 1,37 мм в среднем стержне каких-либо электрических переделок, но при этом соединитель Х2 модуля МП-4-6 должен быть сдвинут влево на один контакт (его второй контакт становится как бы первым контактом) или при подключении МП-44-3 взамен МП-3 четвертый контакт соединителя Х2 становится как бы первым контактом.

В табл. 2 2 приведены намоточные данные импульсных трансформаторов питания.

Общий вид, габаритные размеры и разметка печатной платы для установки импульсных трансформаторов питания приведены на рис. 2.16.

Рис. 2.16. Общий вид, габаритные размеры и разметка печатной платы для установки импульсных трансформаторов питания Особенностью ИИП является то, что их нельзя включать без нагрузки. Иными словами, при ремонте МП должен быть обязательно подключен к телевизору или к выходам МП должны быть подключены эквиваленты нагрузок Принципиальная электрическая схема подключения эквивалентов нагрузок приведена на рис. 2 17.

В схеме должны быть установлены следующие эквиваленты нагрузок: R1-резистор сопротивлением 20 Ом ±5%, мощностью не менее 10 Вт; R2--резистор сопротивлением 36 Ом ±5%, мощностью не менее 15 Вт; R3 - резистор сопротивлением 82 Ом ±5%, мощностью не менее 15 Вт; R4 -РПШ 0,6 А =1000 Ом; в радиолюбительской практике вместо реостата часто используется электроосветительная лампа на 220 В мощностью не менее 25 Вт или на 127 В мощностью 40 Вт; Рис. 2.17. Принципиальная электрическая схема подключения эквивалентов нагрузок к модулю питания R5 - резистор сопротивлением 3,6 Ом, мощностью не менее 50 Вт; С1 - конденсатор типа К50-35-25 В, 470 мкФ; С2 - конденсатор типа К50-35-25 В, 1000 мкФ; СЗ-конденсатор типа К50-35-40 В, 470 мкФ.

Токи нагрузок должны составлять: по цепи 12 В 1„о„=0,6 А; по цепи 15 В 1ном=0,4 А (ток минимальный 0,015 А), максимальный 1 А); по цепи 28 В 1„ОМ=0,35 А; по цепи 125... 135 В 1„Ом=0,4 А (ток минимальный 0,3 А, максимальный 0,5 А).

Импульсный источник питания имеет цепи, подключенные непосредственно к напряжению сети. Поэтому при ремонте МП его необходимо подключать к сети через разделительный трансформатор.

Опасная зона на плате МП со стороны печати обозначена штриховкой сплошными линиями.

Заменять неисправные элементы в модуле следует только после выключения телевизора и разрядки оксидных конденсаторов в цепях фильтра сетевого выпрямителя.

Ремонт МП следует начинать со снятия с него защитных крышек, удаления пыли и грязи, визуальной проверки наличия дефектов монтажа и радиоэлементов с внешними повреждениями. 2.6, Возможные неисправности и методы их устранения Принцип построения базовых моделей телевизоров 4УСЦТ является одинаковым, выходные напряжения вторичных импульсных источников питания также практически одинаковы и предназначены для питания одинаковых участков схемы телевизоров. Поэтому в своей основе внешнее проявление неисправностей, их возмож39

Импульсные трансформаторы питания (ТПИ) применяются в импульсных устройствах электропитания бытовой и офисной аппаратуры с промежуточным преобразованием напряжения питающей сети 127 или 220 В с частотой 50 Гц в импульсы прямоугольной формы с частотой следования до 30 кГц, выполненные в виде модулей или блоков питания: БП, МП-1, МП-2, МП-З, МП-403 и др. Модули имеют одинаковую схему и отличаются только типом используемого импульсного трансформатора и номиналом одного из конденсаторов на выходе фильтра, что определяется особенностями модели, в которой они применяются.
Мощные трансформаторы ТПИ для импульсных источников питания используются для развязки и передачи энергии во вторичные цепи. Накопление энергии в этих трансформаторах нежелательно. При проектировании таких трансформаторов в качестве первого шага необходимо определить размах колебаний магнитной индукции ДВ в установившемся режиме. Трансформатор должен быть рассчитан на работу при возможно большем значении ДВ, что позволяет иметь меньшее число витков в намагничивающей обмотке, увеличить номинальную мощность и уменьшить индуктивность рассеивания На практике значение ДВ может ограничиваться либо индукцией насыщения сердечника B s , либо потерями в магнитопроводе трансформатора.
В большинстве полномостовых, полумостовых и двухполупериодных (балансных) схем со средней точкой трансформатор возбуждается симметрично. При этом значение магнитной индукции изменяется симметрично относительно нуля характеристики намагничивания, что дает возможность иметь теоретическое максимальное значение ДВ, равное удвоенному значению индукции насыщения Bs. В большинстве одно-тактных схем, используемых, например, в однотактных преобразователях, магнитная индукция колеблется полностью в пределах первого квадранта характеристики намагничивания от остаточной индукции Br до индукции насыщения Bs ограничивая теоретический максимум ДВ до значения (Bs — BR). Это означает, что если ДВ не ограничено потерями в магнитопроводе (обычно на частотах ниже 50…100 кГц), для однотактных схем потребуется трансформатор больших размеров при одной и той же выходной мощности.
В питаемых напряжением схемах (которые включают все схемы понижающих стабилизаторов), в соответствии с законом Фарадея, значение ДВ определяется произведением «вольт-секунда» на первичной обмотке. В установившемся режиме произведение «вольт-секунда» на первичной обмотке устанавливается на постоянном уровне. Размах колебаний магнитной индукции, таким образом, также постоянен.
Однако, при обычном методе управления рабочим циклом, который используется большинством микросхем для импульсных стабилизаторов, при запуске и во время резкого увеличения тока нагрузки величина ДВ может достигать удвоенного значения от значения в установившемся режиме Поэтому, чтобы сердечник не насыщался при переходных процессах, установившееся значение ДВ должно быть в два раза меньше теоретического максимума Однако же, если используется микросхема, позволяющая контролировать значение произведения «вольт-секунда» (схемы с отслеживанием возмущения входного напряжения), то максимальное значение произведения «вольт-секунда» фиксируется на уровне, немного превышающем установившийся Это позволяет увеличить значение ДВ и улучшает производительность трансформатора.
Значение индукции насыщения B s для большинства ферритов для сильных магнитных полей типа 2500НМС превышает значение 0.3 Тл. В двухтактных питаемых напряжением схемах величина приращения индукции ДВ обычно ограничивается значением 0,3 Тл. При увеличении частоты возбуждения до 50 кГц потери в магнитопроводе приближаются к потерям в проводах. Увеличение потерь в магнитопроводе на частотах выше 50 кГц приводит к уменьшению значения ДВ.
В однотактных схемах без фиксации произведения «вольт-секунда» для сердечников с (Bs — Br), равным 0,2 Тл, и с учетом переходных процессов установившееся значение ДВ ограничивается на уровне только 0,1 Тл Потери в магнитопроводе на частоте 50 кГц будут незначительными вследствие небольшого размаха колебаний магнитной индукции. В схемах с фиксированным значением произведения «вольт-секунда» величина ДВ может принимать значения до 0,2 Тл, что дает возможность значительно сократить габаритные размеры импульсного трансформатора.
В питаемых током схемах источников питания (повышающие преобразователи и управляемые током понижающие стабилизаторы на связанных катушках индуктивности), значение ДВ определяется произведением «вольт-секунда» на вторичной обмотке при фиксированном выходном напряжении. Так как произведение «вольт-секунда» на выходе не зависит от изменений входного напряжения, то питаемые током схемы могут работать со значением ДВ, близким к теоретическому максимуму (если не учитывать потери в сердечнике), без необходимости ограничения величины произведения «вольт-секунда».
На частотах выше 50 . 100 кГц значение ДВ обычно ограничивается потерями в магнитопроводе.
Вторым шагом при проектировании мощных трансформаторов для импульсных источников питания необходимо произвести правильный выбор типа сердечника, который не будет насыщаться при заданном произведении «вольт-секунда» и обеспечит приемлемые потери в магнитопроводе и обмотках Для этого можно использовать итерационный процесс вычисления, однако приводимые ниже формулы (3 1) и (3 2) позволяют вычислить приближенное значение произведения площадей сердечника S o S c (произведение площади окна сердечника S o и площади поперечного сечения магнитопровода S c) Формула (3 1) применяется, когда значение ДВ ограничено насыщением, а формула (3.2) - когда значение ДВ ограничено потерями в магнитопроводе в сомнительных случаях вычисляются оба значения и используется наибольшее из таблиц справочных данных для различных сердечников выбирается тот тип сердечника, у которого произведение S o S c превышает расчетную величину.

где
Рвх = Рвых/л = (выходная мощность/КПД);
К - коэффициент, учитывающий степень использования окна сердечника, площади первичной обмотки и конструктивный фактор (см. табл 3 1); fp - рабочая частота трансформатора


Для большинства ферритов для сильных магнитных полей коэффициент гистерезиса равен К к = 4 10 5 , а коэффициент потерь на вихревые токи - К вт = 4 10 10 .
В формулах (3.1) и (3.2) предполагается, что обмотки занимают 40% от площади окна сердечника, соотношение между площадями первичной и вторичной обмоток соответствует одинаковой плотности тока в обеих обмотках, равной 420 А/см2, и что суммарные потери в магнитопроводе и обмотках приводят к перепаду температур в зоне нагрева на 30 °С при естественном охлаждении.
В качестве третьего шага при проектировании мощных трансформаторов для импульсных источников питания необходимо произвести расчет обмоток импульсного трансформатора.
В табл. 3.2 приведены унифицированные трансформаторы электропитания типа ТПИ, используемые в телевизионных приемниках.








Намоточные данные трансформаторов типа ТПИ, работающих в импульсных блоках питания стационарных и переносных телевизионных приемниках, приведены в табл 3. 3 Принципиальные электрические схемы трансформаторов ТПИ показаны на рис 3. 1

Рис. 7.20. Принципиальная электрическая схема трансформатора типа ТС-360М Д71Я питания телевизора ЛПТЦ-59-1И

короткого межвиткового замыкания. Коррозия малых диаметров обмоточных проводов приводит к их обрыву.

Конструкция трансформаторов типа ТС-360М обеспечивает надежную работу в блоках питания телевизоров без обрывов в обмотках и других повреждений, а также без появления коррозии на металлических частях при многократном циклическом воздействии температур при повышенной влажности и воздействии механических нагрузок, указанных в условиях эксплуатации. Современные новые технологические процессы изготовления трансформаторов и пропитка обмоток герметизирующими составами увеличивают срок службы как самих трансформаторов, так и аппаратуры в целом.

Трансформаторы устанавливают на металлическом шасси телевизора, крепят четырьмя винтами и заземляют.

Намоточные данные обмоток и электрические парамет ры трансформаторов типа ТС-360М приведены в табл. 7.11 и 7.12. Принципиальная электрическая схема трансформатора дана на рис. 7.20.

Сопротивление изоляции между обмотками, а также между обмотками и металлическими частями трансформатора в нормальных условиях не менее 100 МОм.

7.2. Трансформаторы питания импульсные

В современных моделях телевизионных приемников широкое применение находят импульсные трансформаторы питания, работающие в составе блоков питания или модулей питания, обеспечивая преимущества, рассмотренные в главе, посвященной унифицированным импульсным трансформаторам питания. Телевизионные импульсные трансформаторы имеют ряд существенных особенностей по конструктивному исполнению и техническим характеристикам.

Импульсные сетевые блоки и модули питания телевизионных приемников, питающиеся от сети переменного тока напряжением 127 или 220 В с частотой 50 Гц, применяются для получения напряжений переменного и постоянного тока, необходимых для питания всех функциональных узлов телевизора. Эти блоки и модули питания отличаются от рассмотренных традиционных меньшей материалоемкостью, большей удельной мощностью и более высоким КПД, что обусловлено отсутствием трансформаторов питания типа ТС, работающих на частоте 50 Гц, и использованием Импульсных стабилизаторов вторичных

напряжений вместо компенсационных непрерывного действия.

В импульсных сетевых блоках питания переменное напряжение сети преобразуется в сравнительно высокое напряжение постоянного тока с помощью бестрансформаторного выпрямителя с соответствующим фильтром. Напряжение с выхода фильтра поступает на вход импульсного стабилизатора напряжения, который понижает напряжение с 220 В до 100... 150 В и стабилизирует его. От стабилизатора питается инвертор, выходное напряжение которого имеет форму прямоугольного импульса с повышенной частотой до 40 кГц.

Выпрямитель с фильтром преобразует это напряжение в напряжение постоянного тока. Переменное напряжение получают непосредственно от инвертора. Высокочастотный импульсный трансформатор инвертора устраняет гальваническую связь между выходом блока питания и сети питания. Если не предъявляются повышенные требования к стабильности выходных напряжений блока, то стабилизатор напряжения не применяется. В зависимости от конкретных требований, предъявляемых к блоку питания, он может содержать различные дополнительные функциональные узлы и цепи, так или иначе связанные с импульсным трансформатором: стабилизатор выходного напряжения, устройство захциты от перегрузок и аварийных режимов, цепи первоначального запуска, подавления помех и др. Для блоков питания телевизоров характерно использование инверторов, частота переключения которых определяется насыщением силового трансформатора. В этих случаях применяются инверторы с двумя трансформаторами.

В блоке питания с выходной мощностью 180 В*А при токе нагрузки 3,5 А и частоте преобразования 27 кГц применяются два импульсных трансформатора на кольцевых магнитопроводах. Первый трансформатор изготавливают на двух кольцевых магнитопроводах К31х 18,5x7 из феррита марки 2000НН. Обмотка I содержит 82 витка провода ПЭВ-2 0,5, обмотка П - 16 + 16 витков провода ПЭВ-2 1,0, обмотка Ш - 2 витка провода ПЭВ-2 0,3. Второй трансформатор изготавливают на кольцевом магнитопроводе К10Х6Х5 из феррита марки 2000НН. Обмотки выполнены из провода ПЭВ-2 0,3. Обмотка I содержит десять витков, обмотки П и П1 - по шести витков. Обмотки I обоих трансформаторов размещены равномерно по магнитопроводу, обмотка П1 первого трансформатора размещается на месте, не занятом обмоткой П. Обмотки изолированы между собой лентой из лакоткани. Между обмотками I и II первого трансформатора изоляция трехслойная, между остальными обмотками - однослойная.

В блоке питания: номинальная мощность нагрузки 100 В-А, выходное напряжение не менее plusmn;27 В при номинальной выходной мощности и не менее plusmn;31 В при выходной мощности 10 В-А, КПД - примерно 85 % при номинальной выходной мощности, частота преобразования 25...28 кГц, применяются три импульсных трансформатора. Первый трансформатор выполнен на кольцевом магнитопроводе К10Х6Х4 из феррита марки 2000НМС, обмотки - из провода ПЭВ-2 0,31. Обмотка I содержит восемь витков, остальные обмотки - по четыре витка. Второй трансформатор выполнен на кольцевом магнитопроводе К10Х6Х4 из феррита марки 2000НМЗ, обмотки намотаны проводом ПЭВ-2 0,41. Обмотка I представляет собой один виток, обмотка II содержит два витка. Третий трансформатор имеет сердечник типа Ш7х7 из феррита марки ЗОООНМС. Обмотка I содержит 60x2 витков (2 секции), а обмотка II - 20 витков провода ПЭВ-2 0,31, обмотки III и IV - по 24 витка провода ПЭВ-2 0,41. Обмотки II, III, IV располагаются между секциями обмотки I. Под обмотками

ni и IV и над ними помещены экраны в виде замкнутого витка медной фольги. Магнитопровод третьего трансформатора гальванически соединен с положительным полюсом первичного выпрямителя. Такая конструкция трансформатора необходима для подавления помех, источником которых является мощный инвертор блока.

Применение импульсных трансформаторов обеспечивает повыщение показателей надежности и долговечности, снижение габариттЯлх размеров и массы блоков и модулей питания. Но необходимо отметить также, что импульсные стабилизаторы, применяемые в блоках питания телевизоров, имеют следующие недостатки: более сложное устройство управления, повышенный уровень шумов, радиопомех и пульсации выходного напряжения и одновременно худшие динамические характеристики.

В задающих генераторах строчной или кадровой разверток, работающих по схеме блокинг-генераторов.

применяются импульсные трансформаторы и автотрансформаторы. Эти трансформаторы (автотрансформаторы) являются элементами с сильной индуктивной обратной связью. В технической литературе импульсные трансформаторы и автотрансформаторы для строчной развертки сокращенно обозначаются БТС и БАТС; для кадровой развертки - ВТК и ТБК. Импульсные трансформаторы ВТК и ТБК по конструкции практически не отличаются от других трансформаторов. Изготавливают трансформаторы как для объемного, так и для печатного монтажа.

В блоках и модулях питания применяются импульсные трансформаторы типов ТПИ-2, ТПИ-3, ТПИ-4-2, ТПИ-5 и др.

Намоточные данные трансформаторов, работающих в импульсном режиме, применяемых в стационарных и переносных телевизионных приемниках, приведены в табл. 7.13.

Таблица 7.13. Намокяиые данные имп}1льсяых трансформаторов, 1фименяемых в телевизорах

Обознанение

Марка и диаметр

типономшала

обмотки трансфор-

провода, мм

ние постоянному

трансформатора

Намагничивающая

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Стабилизации

Шаг 2,5 мм

ПЭВТЛ-2 0,45

Положительной об-

Рядовая в

ПЭВТЛ-2 0,45

ратной связи

Выпрямителей с на-

Рядовая в

пряжениями, В:

два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Намагничивания То же

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Стабилизации

ПЭВТЛ-2 0,45

Выпрямителей с на-

пряжениями, В:

ПЭВТЛ-2 0,45

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Фольга один слой

Положительной об-

ПЭВТЛ-2 0,45

ратной связи

или Ш (УШ)

Намагничивания

Рядовая в два провода

ПЭВТЛ-2 0,45

Намагничивания

ПЭВТЛ-2 0,45

Стабилизации

Рядовая, шаг 2,5 мм

ПЭВТЛ-2 0,45

Выпрямителей с на-

пряжением, В:

ПЭВТЛ-2 0,45

Рядовая в два провода

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

ПЭВТЛ-2 0,45

Продолжение табл. 7.13

Обозначение

Наименование

Марка и диаметр

Сопротивле-

типонокмнала

провода, мм

ние постоянному

трансформатора

Положителыюй об-

ПЭВТЛ-2 0,45

ратной связи

Намагничивания

Рядовая в

ПЭВТЛ-2 0,45

два провода

ПЭВТЛ-2 0,45

Стабилизации

ПЭВТЛ-2 0,25

Выходных выпрями-

телей с напряже-

ПЭВТЛ-2 0,45

Рядовая в

ПЭВТЛ-2 0,45

два провода

Рядовая в

ПЭВТЛ-2 0,45

два провода

ПЭВТЛ-2 0,45

Положительной об-

ПЭВТЛ-2 0,45

ратной связи

Первичная

Вторичная

12 пластин

Первичная

Универсаль-

Вторичная

Первичная

Вторичная

Первичная

Рекуперационная

Первичная

Обратной связи

Выходная

Первичная сетевая

Рядовая в

ПЭВТЛ-2 0,5