Как рассчитать номинальный ток трехфазного электродвигателя. Основные размеры электродвигателей Как определить мощность и обороты электродвигателя

Очень часто возникают ситуации, когда на имеющемся производственном оборудовании, изготовленном 20 - 30 лет назад, выходят из строя электродвигатели и для их замены нужно подобрать аналог. Вариантов поломки множество: это может быть выход из строя обмотки в результате нагрева при длительной перегрузке электродвигателя, а также естественного старения изоляции обмоточного провода; механический износ конца вала; полная поломка вала в результате резких ударных нагрузок или чрезмерной радиальной нагрузки; поломка лап станины; поломка лопастей осевого вентилятора или ребер на станине улучшающих теплоотдачу.

Так как основными приводными механизмами производственного оборудования являются трехфазные асинхронные двигатели, то мы и разберем именно тот случай, при котором нужно подобрать аналог асинхронному электродвигателю, вышедшему из строя.

Представим следующую ситуацию. Имеется группа из трех насосов, работающих на откачку воды из бака для слива оборотной воды. Вода применяется в цикле охлаждения технологического оборудования, простои которого не допустимы. На все насосы установлены электродвигатели отечественного производства серии АО2. Данная серия электродвигателей разработана в конце пятидесятых годов прошлого века и давно снята с производства.

Режим работы насосов таков. Один насос включен в работу постоянно, второй включается кратковременно в случае, если первый не справляется с возложенной на него задачей и происходит перелив воды в баке. Третий насос резервный.

За долгий период эксплуатации электродвигатели не раз разбирались для замены подшипников. При разборке на одном из двигателей был сломан осевой вентилятор и этот двигатель был поставлен в резерв. Другой двигатель демонтировался для замены обмотки и при его демонтаже была сломана лапа. Бывает и такое.

Что делать? Срочно собирали из двух поврежденных электродвигателей один рабочий. Теперь не остается резервного насоса. Необходимо срочно подобрать аналогичный электродвигатель, имеющий точно такие же или максимально приближенные технические характеристики и габаритные размеры.

Определение параметров существующего электродвигателя

Первым делом для подбора аналога требуется выяснить, что за двигатель установлен в настоящее время. Тип электродвигателя можно узнать, прочитав табличку, прикрепленную к станине электродвигателя. Там же можно рассмотреть, если табличка не закрашена многолетними слоями краски или не исцарапана отверткой, основные технические характеристики, такие как: номинальную мощность электродвигателя P ном, кВт (мощность передаваемую на вал P 2 , не путайте с мощностью P 1 и S - потребляемой из сети); номинальное питающее напряжение U ном; номинальный ток I ном, А; номинальное число оборотов вала n ном, об/мин; коэффициент полезного действия η; коэффициент мощности cos φ ; режим работы; конструктивное исполнение, IM; защитное исполнение, IP; массу, кг; год выпуска. Если все же табличка не читабельна, необходимо обратиться к проектно-конструкторской документации технологического оборудования. В ней есть все перечисленные данные.

В итоге выясняем, что тип установленного электродвигателя - АО2-81-4У3. Расшифруем обозначение типа электродвигателя АО2-81-4У3:
- АО2 - как уже говорилось, это серия электродвигателей. Данная серия была представлена 6-ю типоразмерами (габаритами), с 3-го по 9-й, со станиной закрытого исполнения и подшипниковыми щитами из чугуна;
- 8 - порядковый номер габарита;
- 1 - порядковый номер длины сердечника статора;
- 4 - число полюсов;
- У - климатическое исполнение;
- 3 - категория размещения.

Данный тип электродвигателя является трехфазным электродвигателем общего назначения, основного исполнения, и рассчитан на продолжительный режим работы (S1). При данном режиме работы электродвигатель развивает мощность на валу равную 40 кВт при 1455 об/мин. Потребляемый из сети номинальный ток равен 126 А, при напряжении питания 220 В и 73 А, при напряжении питания 380 В. Соответственно обмотка электродвигателя может быть собрана в треугольник, при напряжении питания 220 В, и в звезду при напряжении питания 380 В. Коэффициент полезного действия 91,5%, коэффициент мощности 0,91.

Конструктивное исполнение двигателя IM1001 (с одним цилиндрическим концом вала, установленный в горизонтальном положении на лапы). Степень защиты электродвигателя от внешних воздействий IP54.

Стоит отметить, что практически все электродвигатели, начиная с мощности 15 - 20 кВт, изготавливают с шестью выводными концами обмотки. Это дает возможность запуска электродвигателя большой мощности переключением со звезды на треугольник, а также подключения электродвигателя на одно из двух напряжений питающей сети.

Стандартные напряжения питающей сети, при классе напряжения до 1000 В - 220, 380 и 660 В. Поэтому когда вы подбираете электродвигатель с шестью выводными концами обмотки, обязательно обращайте внимание, на какие напряжения он рассчитан. Обычно это 220/380 В и 380/660 В.

Теперь нужно выяснить присоединительные размеры двигателя, а именно: высоту оси вращения вала; диаметр вала; расстояние между крепежными отверстиями расположенные на лапах станины; расстояние конца вала от передних крепежных отверстий (вылет вала), длину конца вала.

Размеры возможно определить непосредственно на электродвигателе с помощью измерительного инструмента, а также найти их в справочной литературе, что мы в данном случае и сделаем. Основные технические характеристики электродвигателей серии АО2 приведены в справочнике по электрическим машинам, 1988 года, составленный по редакцией И. П. Копылова.

На странице 304 в таблице 9.52 приведены габаритные, установочные и присоединительные размеры нашего двигателя.

В первой колонке находим обозначение габарита двигателя - 81. Далее, как в любой другой таблице, в выбранной строке находим интересующие нас размеры:
- высота оси вращения - h = 250 мм;
- диаметр конца вала - d = 60 мм;
- длина конца вала - l = 140 мм;
2C = 406 мм;
2C 2 = 311 мм;
- вылет конца вала - L 8 = 168 мм.

Рисунок 1. Таблица габаритных, установочных и присоединительных размеров двигателей серии АО2

Итак, мы собрали все необходимые сведения для подбора аналогичного электродвигателя. Сейчас нужно определиться с производителем. В этом случае как говорится: - "На вкус и цвет товарищей нет". Мне, на основании личного опыта эксплуатации электродвигателей, нравятся электродвигатели ОАО "Ярославский электромашиностроительный завод". Заходим на сайт предприятия и скачиваем полный каталог продукции

Прежде всего, обращаем внимание на то, что электродвигатели, выпускаемые данным предприятием, изготавливаются в соответствии двум стандартам, это - DIN и ГОСТ. DIN (Deutsches Institut für Normung) - Немецкий национальный стандарт, который используется практически во всей Европе. ГОСТ - государственный стандарт бывшего СССР, а теперь межгосударственный России и стран СНГ. Смотрим электродвигатели обоих стандартов.

Начинать лучше с просмотра габаритных и присоединительных размеров. На странице 44 находим таблицу с размерами для электродвигателей по DIN в конструктивном исполнении IM1001.

В первую очередь нас интересуют размеры конца вала, то есть его диаметр и длина. Ищем значение d 1 = 60 мм и l 1 = 140 мм, для числа полюсов - 4. Находим соответствующие этим значениям типы электродвигателей RA225S и RA225M (рисунок 2) с высотой оси вращения вала h = 225 мм.

Высота оси вращения, при той же мощности, на всех современных электродвигателях, ниже, чем у изготавливаемых ранее. Связано это с использованием производителями более лучших, с технической точки зрения, электротехнических материалов. Поэтому они становятся более компактными и легкими.
Расшифруем обозначение типа электродвигателя, к примеру - RA225S4У3:
- RA - серия электродвигателей. Данная серия имеет 15 типоразмеров;
- 225 - высота оси вращения вала;
- S - установочный размер по длине станины (условная длина статора);
- 4 - число полюсов;
- У - климатическое исполнение;
- 3 - категория размещения.

Рисунок 2. Таблица габаритных, установочных и присоединительных размеров двигателей серии RA, страница 44

Вылет вала у того и другого электродвигателя - l 31 = 149 мм; расстояние между крепежными отверстиями по ширине станины - b 10 = 356 мм. Расстояние между крепежными отверстиями по длине станины для электродвигателя RA225S - l 10 = 286 мм; для электродвигателя RA225M - l 10 = 311 мм. Из всех размеров совпал только один, это расстояние по длине станины между крепежными отверстиями для электродвигателя RA225M - l 10 = 311 мм. Но это не существенный аргумент, так как в любом случае при установке придется сверлить новые отверстия в постели, в связи с меньшим вылетом конца вала.

Проверим размеры электродвигателя следующего габарита RA250M (рисунок 2):
- высота оси вращения - h = 250 мм;
- диаметр конца вала - d 1 = 65 мм;
- длина конца вала - l 1 = 140 мм;
- расстояние по ширине станины между крепежными отверстиями - b 10 = 406 мм;
- расстояние по длине станины между крепежными отверстиями - l 10 = 349 мм;
- вылет конца вала - l 31 = 168 мм.

Вывод. Для установки и подгонки на место электродвигателя RA225S и RA225M придется изготовить из листового металла переходную постель. Для установки электродвигателя RA250M нужно будет расточить отверстие полумуфты под диаметр вала 65 мм и шпоночный паз этого отверстия. В том и другом случае необходимо разметить и высверлить новые крепежные отверстия в существующей постели.

Переходим на страницу 45 - 46 с размерами электродвигателей по ГОСТ.

Точно также находим наиболее подходящие типы электродвигателей и выписываем для сравнения, интересующие нас размеры.

Электродвигатель А200L (рисунок 3) имеет следующие размеры:
- высота оси вращения - h = 200 мм;
- диаметр конца вала - d 1 = 60 мм;
- длина конца вала - l 1 = 140 мм;
- расстояние по ширине станины между крепежными отверстиями - b 10 = 318 мм;
- расстояние по длине станины между крепежными отверстиями - l 10 = 305 мм;
- вылет конца вала - l 31 = 133 мм.

Рисунок 3. Таблица габаритных, установочных и присоединительных размеров двигателей серии А, страница 45

Электродвигатель А225M (рисунок 3):
- высота оси вращения - h = 225 мм;
- диаметр конца вала - d 1 = 65 мм;
- длина конца вала - l 1 = 140 мм;
- расстояние по ширине станины между крепежными отверстиями - b 10 = 356 мм;
- расстояние по длине станины между крепежными отверстиями - l 10 = 311 мм;
- вылет конца вала - l 31 = 149 мм.

Рисунок 4. Таблица габаритных, установочных и присоединительных размеров двигателей серии А, страница 46

Электродвигатель А250S (рисунок 4):
- высота оси вращения - h = 250 мм;
- диаметр конца вала - d 1 = 75 мм;
- длина конца вала - l 1 = 140 мм;
- расстояние по ширине станины между крепежными отверстиями - b 10 = 406 мм;
- расстояние по длине станины между крепежными отверстиями - l 10 = 311 мм;
- вылет конца вала - l 31 = 168 мм.

Для удобства сравнения полученные результаты сведем в таблицу.

Тип электродвигателя

Высота оси вращения вала, мм

Диаметр конца вала, мм

Длина конца вала, мм

Вылет конца вала, мм

Расстояние по ширине станины между крепежными отверстиями, мм

Расстояние по длине станины между крепежными отверстиями, мм

Сравнивая полученные результаты, сделать сразу конкретный вывод о применении того или иного двигателя невозможно, поскольку все зависит от возможности его установки. Нужно принимать во внимание внешние габариты пространства, в котором он будет установлен, войдет он туда или нет. Возможно, ли просверлить новые крепежные отверстия в существующей постели. Получится ли расточить отверстие существующей полумуфты для ее дальнейшего использования или нужно изготовить новую, и так далее.

Если есть возможность изготовить новую постель, то лучше применить двигатель с меньшей высотой оси вращения вала, поскольку, устанавливая электродвигатель с равной высотой вращения, приходится переплачивать за лишнюю мощность. К примеру, стоимость электродвигателя A200L4, мощностью 45 кВт, ниже более чем в 1,5 раза, стоимости электродвигателя A250S4, мощностью 75 кВт.

В данном случае будем полагать, что никаких препятствий для установки двигателей у нас нет. Тогда наиболее подходящим для замены будет электродвигатель RA225M4. Посмотрим его энергетические характеристики. Для этого перейдем на страницу 16. Находим строку с этим типом электродвигателя и видим:
- тип двигателя - RA225M4;
- номинальная частота вращения, n - 1465 об/мин;
- номинальная мощность, P ном - 45 кВт;
- коэффициент полезного действия, η - 92,5%;
- коэффициент мощности, cos φ - 0,87
- номинальный ток при напряжении 380 В, I ном - 86 А.

Не пугайтесь этих цифр, ведь в таблице указана мощность при номинальном режиме работы двигателя, то есть при его 100% загрузке. А так как нагружен наш новый двигатель будет на -

то и потребляемый в номинальном режиме ток составит:

Возможно, вам даже не придется перенастраивать аппараты защиты электродвигателя.

Что касается климатического исполнения и категории размещения то их нужно принять точно такие, как и у вышедшего из строя двигателя (У3). Тогда тип электродвигателя будет выглядеть так RA225M4У3.

Электрический двигатель представляет собой электромеханическое устройство, основанное на электромагнетизме, позволяющем преобразовывать электрическую энергию, например, в рабочую или механическую энергию. Этот процесс является обратимым и может быть использован для выработки электроэнергии. Однако все эти электрические машины являются обратимыми и могут быть «двигателем» либо «генератором» в четырех квадрантах плоскости с крутящим моментом.

Ранние разработки

В 1821 году, после открытия феномена связи электричества и магнетизма, датским химиком Эрстедом, теоремы Ампера и закона Био - Савара, английский физик Майкл Фарадей построил два аппарата, которые он назвал «электромагнитное вращение»: непрерывное круговое движение магнитной силы вокруг провода - это фактическая демонстрация первого электродвигателя.

В 1822 году Питер Барлоу построил то, что можно считать первым электродвигателем в истории: «колесо Барлоу». Это устройство представляет собой простой металлический диск, нарезанный звездой, и концы которого погружаются в чашку, содержащую ртуть, обеспечивающая текущий поток. Однако он создает только силу, способную ее поворачивать, не допуская ее практического применения.

Первый экспериментально используемый коммутатор был изобретен в 1832 году Уильямом Стерджоном. Первый двигатель постоянного тока, изготовленный с целью продажи, был изобретен Томасом Давенпортом в 1834 году и запатентован в 1837 году. Эти двигатели не испытали никакого промышленного развития из-за высокой стоимости батарей в то время.

Электродвигатель с DC

Коммутируемый аппарат постоянного тока имеет набор вращающихся обмоток, намотанных на якорь, установленный на вращающемся валу. На валу также имеется коммутатор, долговременный поворотный электрический выключатель, который периодически меняет поток тока в обмотках ротора при вращении вала. Таким образом, каждый мостовой мотор постоянного тока имеет переменный ток, проходящий через вращающиеся обмотки. Ток протекает через одну или несколько пар щеток, которые несут на коммутаторе; щеточки соединяют внешний источник электроэнергии с вращающейся арматурой.

Вращающаяся арматура состоит из одной или нескольких катушек проволоки, намотанной вокруг ламинированного ферромагнитного сердечника. Ток от щетки протекает через коммутатор и одну обмотку якоря, делая его временным магнитом (электромагнитом). Магнитное поле, создаваемое якорем, взаимодействует со стационарным магнитным полем, создаваемым либо PM, либо другой обмоткой (полевой катушкой), как часть каркаса двигателя.

Сила между двумя магнитными полями имеет тенденцию вращать вал двигателя. Коммутатор переключает питание на катушки при повороте ротора, удерживая магнитные полюса, от когда-либо полностью совпадающего с магнитными полюсами поля статора, так что ротор никогда не останавливается (как стрелка компаса), а скорее вращается пока есть питание.

Хотя большинство коммутаторов являются цилиндрическими, некоторые из них представляют собой плоские диски, состоящие из нескольких сегментов (как правило, не менее трех), установленных на изоляторе.

Большие щетки желательны для большей площади контакта щетки, для максимизации мощности двигателя, но небольшие щеточки желательны для малой массы, чтобы максимизировать скорость, с которой двигатель может работать, без чрезмерного отскока и искрения щеток. Более жесткие пружины для щеток также могут использоваться для создания щеток заданной массы на более высокой скорости, но за счет больших потерь из-за трения и износа ускоренной щетки и коммутатора. Поэтому конструкция электродвигателя постоянного тока влечет за собой компромисс между выходной мощностью, скоростью и эффективностью/износом.

Конструкция двигателей с DC:

  • Схема арматуры - обмотка, в ней переносится ток нагрузки, который может быть неподвижной или вращающейся частью двигателя или генератора.
  • Полевая схема - набор обмоток, создающих магнитное поле, так что электромагнитная индукция может существовать в электрических машинах.
  • Коммутация. Механическая техника, в которой может быть достигнута ректификация, или благодаря чему может быть получен постоянный ток.

Существует четыре основных типов электродвигателей постоянного тока:

  1. Электродвигатель с шунтовой намоткой.
  2. Электродвигатель постоянного тока.
  3. Комбинированный двигатель.
  4. Двигатель PM.

Базовые расчетные показатели

О том, как узнать мощность электродвигателя в статье будет показано далее, на примере с исходными данными.

Хороший научный проект не останавливается на конструировании силового аппарата. Очень важно произвести расчет мощности электродвигателя и различные электрические и механические параметры вашего аппарата и рассчитать формулу мощности электродвигателя используя неизвестные значения и полезные формулы.

Для расчета электродвигателя мы будем использовать Международную систему единиц (СИ). Это современная метрическая система, официально принятая в электротехнике.

Одним из важнейших законов физики является основной закон Ома. Он утверждает, что ток через проводник прямо пропорционален приложенному напряжению и выражается как:

I = V / R

где I - ток, в амперах (A);

V - приложенное напряжение, в вольтах (V);

R - сопротивление, в омах (Ω).

Эта формула может использоваться во многих случаях. Вы можете рассчитать сопротивление вашего двигателя, измерив, потребляемый ток и приложенное напряжение. Для любого заданного сопротивления (в двигателях это в основном сопротивление катушки), эта формула объясняет, что ток можно контролировать приложенным напряжением.

Потребляемая электрическая мощность двигателя определяется по следующей формуле:

Pin = I * V

где Pin - входная мощность, измеренная в ваттах (Вт);

I - ток, измеренный в амперах (A);

V - приложенное напряжение, измеренное в вольтах (V).

Как узнать выходную мощность

Двигатели как предполагается, выполняют какую-то работу, и два важных значения, которые определяют, насколько он мощный. Это скорость и сила поворота двигателя. Выходная механическая мощность двигателя может быть рассчитана по следующей формуле:

Pout = τ * ω

где Pout - выходная мощность, измеренная в ваттах (Вт);

τ - момент силы, измеренный в метрах Ньютона (N м);

ω - угловая скорость, измеренная в радианах в секунду (рад / с).

ω = rpm * 2 * П / 60

где ω - угловая скорость (рад / с);

об / мин - скорость вращения в оборотах в минуту;

П - математическая константа (3.14);

60 - количество секунд в минуте.

Если двигатель имеет 100% КПД, вся электрическая энергия преобразуется в механическую энергию. Однако таких двигателей не существует. Даже прецизионные малые промышленные двигатели, имеют максимальную эффективность 50-60%.

Измерение момент силы двигателя является сложной задачей. Для этого требуется специальное дорогостоящее оборудование. Но это возможно сделать и самому обладая специальной информацией и формулами.

Показатели механической эффективности

Эффективность двигателя рассчитывается как механическая выходная мощность, деленная на электрическую входную мощность:

E = Pout / Pin

следовательно,

Pout = Pin * E

после подстановки мы получаем:

Т * ω = I * V * E

Т * rpm * 2 * П / 60 = I * V * E

и формула для расчета момента силы будет равна:

Т = (I * V * E * 60) / (об / мин * 2 * П)

Чтобы определить мощность двигателя необходимо подключить его к нагрузке, для образования момента силы. Измерьте ток, напряжение и об / мин. Теперь вы можете рассчитать момент силы для этой нагрузки с этой скоростью, предполагая, что вы знаете эффективность двигателя.

Оценочная 15-процентная эффективность представляет собой максимальную эффективность двигателя, которая происходит только с определенной скоростью. Эффективность может быть какая угодно между нулем и максимумом; в нашем примере ниже 1000 об / мин может быть неоптимальная скорость, поэтому для расчетов вы можете использовать 10% КПД (E = 0,1).

Пример: скорость 1000 об / мин, напряжение 6 В, а ток 220 мА (0,22 А):

Т = (0,22 * 6 * 0,1 * 60) / (1000 * 2 * 3,14) = 0,00126 Н м

Как результат, обычно он выражается в миллиньютонах умноженные на метры (мН м). 1000 мН м в 1 Н м, поэтому рассчитанный крутящий момент составляет 1,26 мН м. Его можно было бы преобразовать далее в (г-см), умножив результат на 10,2, и. е. Крутящий момент составляет 12,86 г-см.

В нашем примере входная мощность двигателя составляет 0,22 A x 6 V = 1,32 Вт, механическая мощность выхода составляет 1000 об / мин x 2×3,14×0,00126 Н м / 60 = 0,132 Вт.

Момент силы двигателя изменяется со скоростью. При отсутствии нагрузки максимальная скорость и нулевой крутящий момент. Нагрузка добавляет механическое сопротивление. Мотор начинает потреблять больше тока для преодоления этого сопротивления, и скорость уменьшается. Когда это происходит, момент силы максимален.

Насколько точен расчет крутящего момента, определяется следующим образом. В то время как напряжение, ток и скорость могут быть точно измерены, эффективность двигателя может быть неправильной. Это зависит от точности вашей сборки, положения датчика, трения, выравнивания моторов и осей генератора и т. д.

Скорость, крутящий момент, мощность и эффективность не являются постоянными значениями. Обычно производитель предоставляет следующие данные в специальных таблицах.

Линейный двигатель по существу является асинхронным двигателем, ротор которого «разворачивается», так что вместо создания вращательной силы вращающимся электромагнитным полем, он создает линейную силу вдоль своей длины путем установки электромагнитного поля смещения.

Акустический шум

Акустический шум и вибрации электродвигателей обычно возникает из трех источников:

  • механические источники (например, из-за подшипников);
  • аэродинамические источники (например, благодаря вентиляторам, установленным на валу);
  • магнитные источники (например, из-за магнитных сил, таких как силы Максвелла и магнитострикции, действующие на структуры статора и ротора).

Последний источник, который может отвечать за шум электродвигателей, называется электрически-возбужденным акустическим шумом.

Габаритно-присоединительные размеры электродвигателей АИР

Статья содержит максимально полные технические данные о габаритах и установочных размерах . Монтажные исполнения, габариты, крепежные размеры по лапам, валу и фланцам, ширина шпонки и шпоночного паза. Сводные таблицы габаритно-присоединительных размеров асинхронных двигателей АИР 63-355 габарита.

Обозначения основных монтажных и присоединительных размеров двигателей

В самом низу статьи Вы сможете легко подобрать электродвигатель по диаметру вала и ширине шпонки. Данные присоединительные размеры позволят без труда заказать соединительную муфту при комплектации двигателя с другим оборудованием (насосом, вентилятором, редуктором).

  • h - высота вращения вала или габарит электродвигателя. Высота от центра оси вала до земли. Важный присоединительный размер при сборе агрегата и центровке.
  • l30*h31*d24 - длина, высота, ширина электродвигателя АИР, размеры по габаритам. Необходимы для калькуляции цены доставки и необходимого места при транспортировке.
  • m - вес электродвигателя, масса. Нужен для расчета транспортных издержек и сопромата
  • d1 - диаметр вала. Габаритно-присоединительный размер АИР, необходимый при агрегатировании с другим оборудованием или подбора полумуфты.
  • d20 - ширина, крепежный диаметр фланца. d22 - диаметр отверстий фланца. Габаритный размер для изготовления или подбора ответного фланца.
  • l10 и b10 – расстояние между крепежными отверстиями на лапах электродвигателя. Важный габаритно-установочный размер, необходимый при монтаже электродвигателя к станине или на платформу.
  • L1 – длина вала.
  • b1 – ширина шпонки. Размер необходим для изготовления полумуфты.

Исполнения двигателей по способу монтажа – фланец, лапы, комбинированное

Присоединительный и габаритный чертеж монтажного исполнения электродвигателя АИР на лапах (IM 1081), лапы-фланец (IM 2081), чистый фланец (IM 3081).

Чертеж монтажного исполнения IM1081
на лапах

Чертеж монтажного исполнения IM2081, IM3081
(лапы-фланец)

Таблицы габаритных размеров электродвигателей АИР

Таблица габаритов и вес асинхронных электродвигателей АИР63

Все установочные размеры асинхронных электродвигателей АИР 63-го габарита: АИР 63A2, АИР63A4, АИР63B2, АИР63B4.

Маркировка Парметры l30*h31*d24, мм H, мм D1, мм L1, мм Крепеж по лапам Крепеж по фланцу Вес, кг
L10 B10 D20 D22
АИР63A2 0,37/3000 239х163х161 63 14 30 80 100 130 10 5,2
АИР63A4 0,25/1500
АИР63B2 0,55/3000
АИР63B4 0,37/1500

Таблица габаритных параметров асинхронных моторов 71

Крепежные и присоединительные размеры электродвигателей АИР71А2, АИР 71А4, АИР 71А6, АИР71В2, АИР 71В4, АИР 71В6.

Маркировка Парметры l30*h31*d24, мм H, мм D1, мм L1, мм Крепеж по лапам Крепеж по фланцу M, кг
L10 B10 D20 D22
АИР71А2 0,75/3000 275х190х201 71 19 40 90 112 165 12 8,7
АИР71А4 0,55/1500
АИР71А6 0,37/1000
1,1/3000
АИР71В4 0,75/1500
АИР71В6 0,55/1000

Габаритно-присоединительные характеристики электромоторов 80 габарита

Присоединительные и монтажные размеры асинхронных электродвигателей АИР 80А2, АИР 80А4, АИР80А6, АИР 80B2, АИР80B4, АИР80B6.

Маркировка Параметры l30*h31*d24 H D1 L1 Крепеж по лапам Крепеж по фланцу Вес, кг
L10 B10 D20 D22
1,5/3000 301х208х201 80 22 50 100 125 165 11 13,3
1,1/1500
АИР80А6 0,75/1000
2,2/3000 322х210х201 15
1,5/1500
1,1/1000

Габаритные и установочные параметры электродвигателей с высотой вала 90 мм

Размеры, длина, ширина, высота и диаметр вала и вес электродвигателя АИР90L2, АИР90L4, АИР 90L6. Присоединительные

Таблица присоединительных габаритов двигателей АИР100. Установочные

Каталог асинхронных электродвигателей АИР 100S2, АИР 100S4, АИР100L2, АИР 100L4, АИР100L6 с крепежными и установочными размерами и весом.

Маркировка Парметры l30*h31*d24 H D1 L1 Крепеж по лапам Крепеж по фланцу Вес, кг
L10 B10 D20 D22
379х230х251 100 28 60 112 160 215 14 30
3/1500
422х279х251 140 32
4/1500
2,2/1000

Каталог асинхронных двигателей АИР112. Диаметр 32мм

Справочник электродвигателей АИР112M2, АИР 112M4, АИР112M6, АИР 112M6, АИР112M8 с габаритными, установочными и присоединительными размерами.

Маркировка Парметры Габариты H D1 L1 Крепеж по лапам Крепеж по фланцу M, кг
L10 B10 D20 D22
7,5/3000 477х299х301 112 32 80 140 190 265 14 48
5,5/1500
3/1000
4/1000
2,2/750

Характеристики моторов и установочные крепежи с высотой вала 132

Технический каталог асинхронных электродвигателей АИР 132S4, АИР132S6, АИР132S8, АИР132M2, АИР132M4, АИР132M6, АИР132M8. Размеры, вес и диаметр вала.

Маркировка Парметры l30*h31*d24 H D1 L1 Крепеж по лапам Межосевые по фланцу Вес, кг
L10 B10 D20 D22
7,5/1500 511х347х351 132 38 80 140 216 300 19 70
5,5/1000
4/750
11/3000 499х327х352 178 78
11/1500
7,5/1000
5,5/750

Таблица крепежных и установочных типоразмеров электромоторов с высотой вала 160 мм

Габаритные, установочные и присоединительные размеры электродвигателей с высотой вала 160: АИР160S2, АИР160S4, АИР160S6, АИР160S8, АИР160M2, АИР160M4, АИР160M6, АИР160M8.

Маркировка Парметры l30*h31*d24 H D1 L1 Межосевые по лапам Межосевые по фланцу M, т
L10 B10 D20 D22
15/3000 629х438х353 160 42 110 178 254 300 19 0,116
626х436х351 48 0,12
11/1000
7,5/750
671х436х351 42 210 0,13
18,5/1500 48 0,142
15/1000

Габаритно-установочные и вес двигателей 180 мм

Присоединительные и установочные размеры общепромышленных электродвигателей АИР в 180 габарите: АИР180S2, АИР180S4, АИР180M2, АИР180M4, АИР180M6, АИР180M8.

Маркировка Парметры l30*h31*d24 H D1 L1 Межосевые по лапам Межосевые по фланцу Вес, т
L10 B10 D20 D22
22/3000 702х463х401 180 48 110 203 279 350 19 0,15
22/1500 55 0,16
742х461х402 48 241 0,17
30/1500 55 0,19
18,5/1000
15/750

Крепежные характеристики, присоединительные размеры моторов АИР200. Вал, диаметр.

Таблица установочных размеров общепромышленных электродвигателей 200 габарита: АИР200L2, АИР200L4, АИР200L6, АИР200L8, АИР200M2, АИР200M4, АИР200M6, АИР200M8.

Маркировка Парметры Габариты H D1 L1 Межосевые по лапам Межосевые по фланцу M, т
L10 B10 D20 D22
37/3000 776х506х450 200 55 110 267 318 400 19 0,23
37/1500 60 140 0,195
18,5/750
45/3000 776х506х450 55 110 310 0,255
60 140 0,2
30/1000
22/750

Привязка мощности и оборотов к установочным и присоединительным размерам АИР225

Каталог электродвигателей АИР 225S2, АИР225S4, АИР225S6, АИР225S8, АИР 225M2, АИР225M4, АИР225M6, АИР225M8 с габаритными, крепежными размерами и диаметром.

Маркировка Парметры l30*h31*d24 H D1 L1 Межосевые по лапам Межосевые по фланцу Вес, т
L10 B10 D20 D22
55/3000 836х536х551 225 55 110 311 356 500 19 0,32
55/1500 65 140 0,325
30/750

Таблица посадочных и присоединительных параметров двигателей с 250 высотой вала

Габаритно-установочные размеры асинхронных электродвигателей АИР 250 габарита: АИР250S2, АИР250S4, АИР250S6, АИР250S8, АИР250M2, АИР250M4, АИР250M6, АИР250M8. Крепежи, диаметр.

Маркировка Парметры l30*h31*d24 H D1 L1 Межосевые по лапам Межосевые по фланцу M, т
L10 B10 D20 D22
75/3000 882х591х552 250 65 140 311 406 500 19 425
75/1500 75 450
45/1000
37/750
90/3000 907х593х551 65 349 455
90/1500 75 480
55/1000

Габариты, присоединительные и крепежи двигателей АИР 280. Диаметр вала

Установочные, присоединительные размеры электродвигателей АИР 280 габарита: АИР280S2, АИР280S4, АИР280S6, АИР280S8, АИР 280M2, АИР280M4, АИР280M6, АИР280M8.

Маркировка Парметры l30*h31*d24 H D1 L1 Межосевые по лапам Межосевые по фланцу Вес, т
L10 B10 D20 D22
110/3000 1111х666х666 280 70 140 368 457 550 24 0,59
110/1500 80 170 0,79
75/1000
55/750
132/3000 70 140 419 0,62
80 170 0,885
90/1000

Рассмотрим 5 популярных способа как вычислить мощность двигателя автомобиля используя такие данные как:

  • обороты двигателя,
  • объем мотора,
  • крутящий момент,
  • эффективное давление в камере сгорания,
  • расход топлива,
  • производительность форсунок,
  • вес машины
  • время разгона до 100 км.

Каждая из формул, по которой будет производиться расчет мощности двигателя автомобиля довольно относительная и не может со 100% точностью определить реальную лошадиную силу движущую машину. Но произведя подсчеты каждым из приведенных гаражных вариантов, опираясь не те или иные показатели, можно рассчитать, по крайней мене, среднее значение будь-то стоковый или тюнингованный движок, буквально с 10-ти процентной погрешностью .

Мощность - энергия, вырабатываемая двигателем, она преобразуется в крутящий момент на выходном валу ДВС. Это не постоянная величина. Рядом со значениями максимальной мощности всегда указываются обороты, при которых можно её достигнуть. Точкой максимума достигается при наибольшем среднее эффективном давлении в цилиндре (зависит от качества наполнения свежей топливной смесью, полноты сгорания и тепловых потерь). Наибольшую мощность современные моторы выдают в среднем при 5500–6500 об/мин. В автомобильной сфере измерять мощность двигателя принято в лошадиных силах. Поэтому поскольку большинство результатов выводятся в киловаттах вам понадобится

Как рассчитать мощность через крутящий момент

Самый простой расчет мощности двигателя авто можно определить по зависимости крутящего момента и оборотов .

Крутящий момент

Сила, умноженная на плечо ее приложения, которую может выдать двигатель для преодоления тех или иных сопротивлений движению. Определяет быстроту достижения мотором максимальной мощности. Расчетная формула крутящего момента от объема двигателя:

Мкр = VHхPE/0,12566 , где

  • VH – рабочий объем двигателя (л),
  • PE – среднее эффективное давление в камере сгорания (бар).
Обороты двигателя

Скорость вращения коленчатого вала.

Формула для расчета мощности двигателя внутреннего сгорания автомобиля имеет следующий вид:

P = Mкр * n/9549 [кВт] , где:

  • Mкр – крутящий момент двигателя (Нм),
  • n – обороты коленчатого вала (об./мин.),
  • 9549 – коэффициент, дабы обороты подставлять именно в об/мин, а не косинусами альфа.

Поскольку по формуле, результат получим у кВт, то при надобности также можно конвертировать в лошадиные силы или попросту умножать на коэффициент 1,36.

Использование данных формул - это самый простой способ перевести крутящий момент в мощность.

А дабы не вдаваться во все эти подробности быстрый расчет мощности ДВС онлайн, можно произвести, используя наш калькулятор.

Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида:

Ne = Vh * pe * n/120 (кВт), где:

  • Vh - объём двигателя, см³
  • n - частота вращения, об/мин
  • pe - среднее эффективное давление, МПа (на обычных бензиновых моторах оставляет порядка 0,82 - 0,85 МПа, форсированных - 0,9 МПа, а для дизеля от 0,9 и до 2,5 МПа соответственно).

Для получения мощности движка в «лошадках», а не киловаттах, результат следует разделить на 0,735.

Расчет мощности двигателя по расходу воздуха

Такой же приблизительный расчет мощности двигателя можно определять и по расходу воздуха. Функция такого расчета доступна тем, у кого установлен бортовой компьютер, поскольку нужно зафиксировать значение расхода, когда двигатель автомобиля, на третьей передаче, раскручен до 5,5 тыс. оборотов. Полученное значение с ДМРВ делим на 3 и получаем результат.

Gв [кг]/3=P[л.с.]

Такой расчет, как и предыдущий, показывает мощность брутто (стендовое испытание двигателя без учета потерь), которая выше на 10-20% от фактической. А еще стоит учесть, что показания датчика ДМРВ сильно зависят от его загрязненности и калибровок.

Расчет мощности по массе и времени разгона до сотни

Еще один интересный способ как рассчитать мощность двигателя на любом виде топлива, будь-то бензин, дизель или газ – по динамике разгона. Для этого используя вес автомобиля (включая пилота) и время разгона до 100 км. А чтобы Формула подсчета мощности была максимально приближена к истине нужно учесть также потери на пробуксовку в зависимости от типа привода и быстроту реакции разных коробок передач. Приблизительные потери при старте для переднеприводных составит 0,5 сек. и 0,3-0,4 у заднеприводных авто.

Используя этот калькулятор мощности ДВС, который поможет определить мощность двигателя исходя из динамики разгона и массы, вы сможете быстро и достаточно точно узнать мощь своего железного коня не вникая в технические характеристики.

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является . Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо - 0.4-0.52, для турбо - 0.6-0.75).

Узнав все необходимые данные, водите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Чаще всего мощность двигателя обозначена в техническом паспорте к устройству и продублирована на корпусе, где есть специальная наклейка или планка с основными техническими параметрами.

Однако нередко случается, что данные на корпусе являются не читаемыми, а технический паспорт давно утерян.

Как же в таком случае выяснить параметры мощности электромотора?

Определение по счетчику:

При отсутствии маркировки на корпусе электромотора можно вычислить его мощность несколькими способами. Самым простым методом является вычисление по счетчику электричества: потребуется отсоединить от этого прибора все прочие устройства, подключить электродвигатель и запустить его под нагрузкой на 5-7 минут. Большинство современных счетчиков выдает показатель нагрузки в киловаттах, и полученный показатель и будет исковым результатом.

Вычисление по таблицам:

Другим способом определения мощности мотора является расчет по данным из таблиц. Для этого понадобится измерить диаметр вала, длину мотора без учета выступающей части вала, а также расстояние до оси. По этим параметрам можно выяснить, к какой серии относится данный мотор, и найти его технические характеристики, в том числе мощность. В сети можно отыскать технические таблицы по двигателям постоянного и переменного тока, где по найденному значению легко отыскать тип устройства и его мощность.

Вычисление по габаритам:

По данному способу необходимо провести следующие действия:

  • Измерить диаметр сердечника в статоре по внутренней части, а также длину с учетом отверстий вентиляции. Значение выражается в сантиметрах.
  • Вычислить частоту сети, к которой подключен электродвигатель, и синхронную частоту валового вращения.
  • Узнать показатель полюсного деления: для этой цели диаметр сердечника умножается на синхронную частоту вращения вала, а найденное значение умножается на 3,14 и делится на частоту сети, умноженное на 120.

Формула вычисления постоянного полюсного значения:

  • Найти число полюсов, перемножив частоту тока на 60 и разделив на частоту валового вращения.
  • Найденное число умножить на 2, после чего обратиться к таблице по определению зависимости константы от числа полюсов и выявить соответствующий показатель.
  • Найденную постоянную величину умножают на квадрат от диаметра сердечника, длину и частоту вращения вала, после чего результат умножается по нижеприведенной формуле:

Найденное значение выражается в кВт.

Вычисление мощности, выдаваемой электродвигателем.

Для вычисления реального показателя мощности, с которой работает электродвигатель, необходимо найти скорость валового вращения, выражаемую в числе оборотов за секунду, тяговое усилие мотора. Частота вращения умножается последовательно на 6,28, показатель силы и радиус вала, который можно вычислить при помощи штангенциркуля. Найденное значение мощности выражается в ваттах.

Определяем потребляемый ток:

Для тех, кому надо знать не только мощность, но и объем потребляемого тока, также есть несколько способов получения таких данных. Для каждого из них важным критерием в процессе определения является количество фаз.
Если у вас однофазная сеть, разделите показатель мощности на значение напряжения.
Если двигатель 3-фазный, схема подсчета еще проще: удвойте значение мощности - это и будет показатель в Амперах.

Как вы убедились, узнать мощность двигателя и потребляемый ток, даже если эти данные утеряны, достаточно просто. Выбирайте самый простой для вас способ решения проблемы и пусть ваша техника всегда работает исправно и имеет высокий КПД!